Engineering Thermodynamics

Problem Set II

- 1- Calculate the entropy of 1 mole of Cu₂S at 800 C and the entropy change when Cu₂S is cooled from 800 C to room temperature S°(Cu₂S)=119.6 J/mol.K, C_P= 81.6 J/mol.K
- 2- Entropy of melting for aluminum is given as 11.54 J/molK. What is the melting point of aluminum? Al(s) S₂₉₈=28.34 J/molK, H_T-H₂₉₈=-6719 + 20.68T + 0.0062T² J/mol Al(I) H_T-H₂₉₈= 1381 + 29.30T J/mol
- 3- The normal boiling point of ethanol, C₂H₅OH, is 78.3°C, and its molar enthalpy of vaporization is 38.56 kJ/mol. What is the change in entropy in the system when 68.3 g of C₂H₅OH(g) at 1 atm condenses to liquid at the normal boiling point? MW_{ethanol}=46 g
- 4- One gram of supercooled liquid zinc at 400 °C is in a container of large heat capacity. Find the entropy change of zinc during solidification Zn(s) $C_p=22.4 + 0.01005 \text{ J/molK} \Delta H_m=7388 \text{ J/mole at }420 \text{ °C}$ Zn(l) $C_p=31.4 \text{ J/molK}$
- 5- Using entropy concept, decide whether the dissociation of H₂ to its ions is spontaneous or not at 298 K
 H₂(g)→2H⁺(g)
 S°(H⁺)= 115 J/mol.K
 S°(H₂)= 130 J/mol.K, ΔH°(H₂)= -436 kJ/mol
- 6- Using free energy concept determine whether the formation of CH₄(g) from its elements in their standard states is spontaneous or not
 CH₄(g) S₂₉₈= 186.28 J/molK ΔH₂₉₈= -74890 J/mol
 H₂(g) S₂₉₈= 130.65 J/molK
 C(s) S₂₉₈= 5.7 J/molK
- 7- Normal boiling point for magnesium is 1393 K. By using entropy concept, calculate whether the evaporation is spontaneous or not at 1400 K under 1 atm pressure. Mg vapor is ideal gas Mg(I) C_p=31 J/molK Δ H_v= 131859 J/mol Mg(s) S₂₉₈=32.5 J/molK, C_p=25.7+0.0063 T+330000/^{T2} J/molK
- 8- Calculate the standard entropy change fo the following reaction at 298 K: Al₂O₃(s)+3H₂(g) \rightarrow 2Al(s)+3H₂O(g)

S°(H₂)= 130.6 J/mol.K S°(H₂O)= 188.8 J/mol.K S°(Al)= 28.34 J/mol.K S°(Al₂O₃)= 51.07 J/mol.K

- 9- Calculate the isothermal entropy change at 1000K for the process Pb(I) + CO₂(g) = PbO(s) + CO(g) CO(g) ΔH_{298} =-110510 J/mol C_p= 28.42 + 0.0041T - 46000/T² J/molK CO₂(g) ΔH_{298} =-394000 J/mol, C_p=44.3+0.0088T-860000/T² J/molK PbO(s) ΔH_{298} =-219350 J/mol, C_p=37.9+0.0268T J/molK, H_T-H₂₉₈= -3508 + 28.46T J/mol
- 10- The normal boiling point is the temperature at which a pure liquid is in equilibrium with its vapor at a pressure of 1 atm. a)Estimate the normal boiling point of liquid carbon tetrachloride, $CCl_4(I)$ based on Trouton's rule b)What is the ΔG° for the equilibrium at boiling point $\Delta H^\circ(CCl_4(I))=-139.3 \text{ kJ/mol}, \Delta H^\circ(CCl_4(g))=-106.7 \text{ kJ/mol}$
- 11- The normal boiling point of benzene is at 80 C. Which term is greater for the vaporization of benzene at 100 °C, Δ H or T Δ S?
- 12- An automobile engine has an efficiency of 22.0% and produces 2510 J of work. How much heat is rejected by the engine?
- 13- If 1200 J of heat spontaneously flows through a copper rod from a hot reservoir at 650 K to a cold reservoir at 350 K, determine the amount by which this process changes the entropy of the universe.
- 14- An ideal, or Carnot, heat pump is used to heat a house at 294 K. How much work must the pump do to deliver 3350 J of heat into the house on a day when the outdoor temperature is 273 K?
- 15- On a hot summer day the temperature scale in your kitchen reads 40 °C, you shut the windows and door closed so that the kitchen is isolated and try to cool your kitchen by leaving the refrigerator door open. The refrigerator works at 10% Carnot efficiency. Calculate the final temperature of the room.