
Course 2 – Mathematical Tools and Unit 
Conversion Used in Thermodynamic Problem 
Solving  



Basic Algebra Computations

1st degree equations - 𝑎𝑥 + 𝑏 = 0
Collect numerical values on one side and unknown to the otherside to find 

the root

2nd degree equations - 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0
Use discriminant equations

Complex equations containing higher degree logarithmic, exponential terms

𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 + 𝑒log𝑥 = 0
Use graphical method

I. Seperate the equation into two parts            𝑎 + 𝑏𝑥 + 𝑐𝑥2 = −𝑑𝑥3 − 𝑒log𝑥

II. Prepare a table of y1 versus y2 with values of x within the domain

III. Plot both y1 and y2 versus x on the same graph

𝑥1,2 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎

y1 y2

x y1 y2

1 -0.6 -1.04

2 -2 -1.67125

3 -4 -2.69143

4 -6.6 -4.38588

5 -9.8 -7.01168

6 -13.6 -10.8174

7 -18 -16.0482

8 -23 -22.9472

9 -28.6 -31.7567

10 -34.8 -42.7183
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Numerical method for complex equations

Successive iteration steps:

• Seperate the equation into two in such a way to have one side of the equation 

with terms that are easy to solve

𝑎 + 𝑏𝑥 = −𝑐𝑥2 − 𝑑𝑥3 − 𝑒log𝑥

• Start the iteration by supplying an initial value for x

• Replace the numerical value of x into y2 and obtain a numerical value for y2

𝑎 + 𝑏𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
• Solve y1 for x

• Compare the new x with the previous x 

• If the two values are different go to the second step using the new x value

• Repeat the process until the two successive x values are equal

Example – Calculate the mole fraction of a gas x, in a mixture from the equation:  

0.43𝑥3 − 1.28𝑥2 + 2.78𝑥 − 0.93 = 0
2.78𝑥 − 0.93 = 1.28𝑥2 − 0.43𝑥3

y1 y2

y1

y1 y2

x y2 y1 x

0.1 0.01323 0.01323 0.3378

0.3378 0.162634 0.162634 0.38

0.38 0.208427 0.208427 0.41

0.41 0.2248 0.2248 0.423

0.423 0.2315 0.2315 0.429

0.429 0.2322 0.2322 0.43



Thermodynamics is a science dealing with energy changes, state changes and 

property changes

∆𝐸 = ∆𝐸𝐾 + ∆𝐸𝑃 + ∆𝑈
∆𝐻 = 𝐻2 − 𝐻1

∆𝑇 =
∆𝑃𝑉

𝑅
Engineering requires accurate calculations, taking into account even the infinitely 

small changes

∆𝐸 =  𝑑𝐸𝐾 + 𝑑𝐸𝑃 + 𝑑𝑈

∆𝐻 =  
𝐻1

𝐻2

𝑑𝐻

∆𝑇 =  𝑑𝑇 =
𝑃

𝑅
 𝑑𝑉

Differential equations and their integrals enable engineers make detailed analysis of 

problems involving changes big or small

Continuous paths of reversible processes also necessitate the use of differential 

equations 



Total differential equations

Useful relationships can be developed from total differential equation by taking z 

constant

𝑑𝑧 =
𝑑𝑧

𝑑𝑥
𝑦
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dividing by dy

−
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Transformation formula

z = f(x, y)



Line integrals

Integrating a simple function such as 𝑦 = 𝑥2 between the limits gives the area under 

the curve

Thermodynamic functions often contain more than one independent variable

Solutions to thermodynamic problems are often done using paths or curves 

Total change in z can be obtained between the limits by integrating dz along a given 

curve
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Steps:

I. Calculate variables and the derivatives in terms of each other using curve 

equation

• Main function: 𝑑𝑧 = 2𝑥3𝑦2𝑑𝑥 +  𝑦 𝑥 𝑑𝑦 Path:  y =  1 𝑥
II. Replace them in the integral in such a way to have only one variable in each part 

of the integral

• 𝑑𝑧 = 2𝑥3  1 𝑥2 𝑑𝑥 + 𝑦
2𝑑𝑦

III. Evaluate the integral between the limits

•  0
2
𝑑𝑧 = 𝑥2 +

𝑦3

3
= 4 +

8

3

Example – Calculate the change in z between (0,0) and (1,1) for 𝑑𝑧 = 𝑥2𝑦𝑑𝑥 + 𝑥𝑦2𝑑𝑦
along the following paths

a) y=x b) y=x2 c) (0,0)(1,0)(1,1)



Exact differentials

The value of Δz becomes independant of the path when certain conditions are met. 

This situation is encountered when dz is an exact differential

For a differential to be exact, it has to meet the Euller’s criteria:

Example – Calculate the change in z between (0,0) and (1,1) for the function   

𝑑𝑧 = (2𝑥 + 𝑦)𝑑𝑥 + (𝑥 + 2𝑦)𝑑𝑦 along the following paths:

a) y=x b) y=x2 c) (0,0)(100,0)(100,1)(1,1)

𝑑𝑧 = 𝑀 𝑥, 𝑦 𝑑𝑥 + 𝑁 𝑥, 𝑦 𝑑𝑦

𝛿𝑀 𝑥, 𝑦

𝛿𝑦
𝑥

=
𝛿𝑀 𝑥, 𝑦

𝛿𝑥
𝑦



Question - Which one of the following statements correctly describes the term state 

property?

a)  A state property gives a complete description of the system 

b)  A state property describes any system property that is conserved

c)  A state property indicates which microstate the system is in

d)  A state property is a property that does not depend on the history of the system

e)  A state property describes the amount of heat added to or removed from a system



Units and conversion factors

Mass - absolute quantity of matter

m – mass, kg

Velocity - distance per unit time

Acceleration - the rate of change of velocity with respect to time

sec

m
  

t

d
v 

where: 

v – velocity in m/sec

d – distance in meters

t – time in sec

2sec

m
  

dt

dv
a 

Force - the mass multiplied by the acceleration

KN  
1000

ma
F

Newton or  
sec

m-kg
 maF

2





1 Newton = 1 kg-m/sec2 

Newton - the force required to accelerate 1 kg mass at the rate of 1 m/sec



Weight - the force due to gravity

Density - the mass per unit volume

Specific weight - the weight per unit volume

KN 
1000

mg
W

N  mgW



 Where:

g – gravitational acceleration, m/sec2

At standard sea  level condition

g = 9.81 m/sec2

3
  

m

kg

V

m


Where;

 - density in kg/m3

m – mass in kg

V – volume in m3

Specific volume - the volume per unit mass or the reciprocal of its density 

kg

3m1

m

V
   




Where:

 - specific volume in m3/kg

3m

KN

1000

g

V1000

mg

V

W
    




Where:

 - specific weight in KN/m3

Specific gravity or relative density
For liquids it is the ratio of its density to that of water at standard 

temperature and pressure.

For gases it is the ratio of its density to that of either air or hydrogen

at some specified temperature and pressure AH

G
G

w

L
L

SGasesFor

SLiquidsFor













  :  

  :  



Pressure – force per unit area

Atmospheric Pressure - the absolute pressure exerted by the atmosphere

At Standard Condition

1 atm = 101.325 KPa

=  1.033 kg/cm2

=  0.101325MPa

=  1.01325 Bar

=  760 mm Hg

=  76 cm Hg

=   14.7 lb/in2

=  10.33 m of H2O

=   29.921 in of Hg

=  33.88 ft of H2O

Work – force acting through a distance

Pascalor  squaredmeter per Newton or   
sec

kg
 

2mA

ma

A

F
P

Jouleor  atmliter or meter Newton or   
sec

m kg
 

2

2

 PVmalFlW



Energy – the capacity to perform work

Kinetic energy – Force applied to a body to move a distance

Potential energy – Upward force exerted on a body to raise to an elevation

Power – Energy output rate of one Joule per second

Jouleor meter Newton 
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Temperature – the degree of intensity of heat

Measured with liquid-in-glass thermometers where the liquid expands when heated

Temperature scale of the SI system is based on the ideal gas as thermometric fluid

The temperature relates to the average of the whole sample, as there is one 

temperature for the sample

Ideal gas is made up of particles or molecules

Each particle in a gas has kinetic energy

All collisions are perfectly elastic

Volume of the particles is insignificant

There are no interactions between particles 

The average kinetic energy of the particles is a function 

of only absolute temperature

The volume of the gas is zero at absolute zero

M

RT
vave

3


Where;

R – gas constant =

8.3144 joules/degree mole

M – Molar mass kg/mole



Temperature Conversion



Gas constant R

Ideal gas obeys Boyle’s law, Charle’s law and Avogadro’s law

𝑉𝑇 ∝
1

𝑉

𝑉𝑃 ∝ 𝑇

𝑃𝑉 ∝ 𝑇
𝛾 ∝ 𝑀

Ideal Gas Equation of State:

Volume per gram-mole of ideal gas at 0 °C and 1 atm is 22.414 liters according to

Avogadro’s law

Thus 

𝑃𝑉 = 𝑛𝑅𝑇

𝑃𝑉

𝑇
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑃1𝑉1
𝑇1

=
𝑃2𝑉2
𝑇2

= 𝑅

𝑃1𝑉1
𝑇1

=
𝑃2𝑉2
𝑇2

=
1 𝑎𝑡𝑚 ∗ 22.414 𝑙𝑖𝑡𝑒𝑟𝑠

273.15 𝑑𝑒𝑔𝑟𝑒𝑒 ∗ 𝑚𝑜𝑙𝑒
= 0.082057  𝑙𝑖𝑡𝑒𝑟 ∗ 𝑎𝑡𝑚

𝑑𝑒𝑔𝑟𝑒𝑒 ∗ 𝑚𝑜𝑙𝑒



Heat - the form of energy transferred from hot to cold objects

It is energy in transit, not stored in the system as heat but as kinetic and potential 

energy of the atoms

The rate of heat transfer from one body to another is proportional to the difference 

in temperature

1 calorie = the quantity of heat required to raise the temperature of 1 gram of water 

by 1 °C    = 4.1840 Joules

Specific Heat

Specific Heat or Heat Capacity is the amount of heat required to raise the

temperature of a 1 kg mass by 1C

Q=mCΔT



Example - What quantity of heat is required to change the temperature of 200 g of 

lead from 20 to 1000C? 

CPb= 130 J/kg.K

Example - An oven applies 400 kJ of heat to a 4 kg of a substance causing its 

temperature to increase by 80 C0.  What is the specific heat capacity?

Example - How many grams of iron at 200C must be heated to 1000C in order to be 

able to release 1800 cal of heat as it returns to its original temperature?

CPb= 113 cal/kg.K



Table of Unit Conversions


